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defects in assembly manufacturing processes
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ABSTRACT

The presence of defects in industrial manufacturing may compromise the final quality and
cost of a product. Among all possible defect causes, human errors have significant effects
on the performances of assembly systems. Much research has been conducted in recent
years focusing on the problem of defect generation in assembly processes, considering the
close connection between assembly complexity and human errors. It was observed that the
relationship between the average number of defects introduced during each assembly
phase and the related assembly complexity follows a power-law relationship. Accordingly,
many authors proposed a data logarithmic transformation in order to linearize the mathem-
atical model. However, as has already been discussed in literature, when the model is
retransformed in the original form a significant bias may occur, leading to completely wrong
predictions. In this paper, the bias due to the logarithmic transformation of models for pre-
dicting defects in assembly is analyzed and discussed. Two alternative methods are pro-
posed and compared to overcome this drawback: the use of a bias correction factor to the
retransformed fitted values and a power-law nonlinear regression model. The latter has
proved to be the best approach to predict defects with few non-repeated data and affected
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by high variability, such as in the case under study.

Introduction

Much research has been conducted in recent years
focused on the problem of defect generation in manu-
facturing, since the presence of defects in the final
product may affect its quality and cost to a great
extent. The sources of these defects may be extremely
different, according to the product typology and the
production context. Many studies have focused on the
identification of the factors that may cause defects,
considering e.g., Ishikawa diagrams, in which the
sources of defects can be classified into several catego-
ries: machines, methods, materials, people, measure-
ments and environment (Ishikawa 1976). The use of
these cause-and-effect diagrams may help to improve
the product design and prevent the occurrence of
defects. The importance of the identification of defects
has already been assessed in other research, mainly in
the field of assembly manufacturing processes.
Assembly, which is one of the activities that consti-
tutes the manufacturing of complex products, together
with the acquisition of raw materials, processing,

functional testing, etc., is crucial for the cost and qual-
ity performance (Vandebroek, Lan, and Knapen 2016;
Xiaoqing, Bo, and Shuchun 2010). Recently, a growing
body of literature has recognized the importance of
the role of quality control in the assembly production
context, since the product life cycle requires a faster
response and a lower defect rate. As a result, assembly
quality control is considered to be one of the most
crucial issues in modern manufacturing environments
(Zhong, Liu, and Shi 2010; Ferrer 2007). Assembly
defects have been classified into four categories:
improper design, defective part, variance in the assem-
bly system (induced by the changes in the plan/sched-
ule/arrangement of a machine, fixture, tooling, etc.),
and operator mistakes (Su, Liu, and Whitney 2010).
In recent years, much research has focused on the first
three categories, and some useful assembly quality
control technologies and management approaches
have been developed (Zhang and Luk 2007; Gearbox,
Pawar, and Mukhopadhyay 2015; Zheng 2000; Ping,
Hua, and Guanlong 2008; He and Kusiak 1997; Evans,
Evans, and Kil Yu 1997; Vandevelde et al. 2018; Qin,
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Cudney, and Hamzic 2015; Chiang and Su 2003). As
far as the fourth category is concerned, there is a large
volume of published studies that have described the
significant impact of human errors on the perform-
ance of assembly systems, which is sometimes higher
than that of technological errors (Shin, Wysk,
and Rothrock 2006; Kang et al. 2018; Le, Qiang, and
Liangfa 2012; Bdez et al. 2014; Saptari, Leau, and
Mohamad 2015; Su, Liu, and Whitney 2010; Shibata
2002; Kolus, Wells, and Neumann 2018; Krugh et al.
2016a; Genta, Galetto, and Franceschini 2018;
Xiaoqing, Bo, and Shuchun 2010; Falck et al. 2017;
Caputo, Pelagagge, and Salini 2017). Research in the
field of semiconductor products has shown that 25%
of the total assembly errors are induced by human
mistakes (Shibata 2002). Another study has demon-
strated that operator errors account for 20% of the
total defects in copier assembly (Su, Liu, and Whitney
2010). These high percentages suggest that more
attention should be paid to operator-induced assem-
bly defects, and that reducing the number of operator
mistakes is a central problem for assembly manufac-
turing processes. For instance, Caputo, Pelagagge,
and Salini (2017) developed a quantitative model to
assess the probability of errors and the correction
costs of errors in part feeding systems for assembly
lines, in order to compare alternative part feeding
policies and identify corrective measures. Genta,
Galetto, and Franceschini (2018) used some defect
prediction models to obtain a priori predictions of
the probability of occurrence of defects in order to
design effective inspection strategies for short-run
productions.

In the past few years, various studies in this field
have focused on the close relationship between assem-
bly complexity and human mistakes. Some prediction
models of the operator-induced assembly defect rate
have been proposed on this basis. Hinckley (1994)
and Hinckley and Barkan (1995) empirically found
that defects per unit were positively correlated with
the total assembly time and negatively correlated with
the number of assembly operations. In later studies,
Shibata, Cheldelin, and Ishii (2003) and Shibata
(2002) detailed Hinckley’s model by subdividing the
product assembly process into a series of manufactur-
ing operations, called by Su, Liu, and Whitney (2010)
“workstations,” which were defined through operation
standard sheets. A certain number of job elements
(Aft 2000), i.e., elementary operations, were identified
at each workstation. In addition, Shibata introduced a
design-based assembly complexity factor because he
had noted that the time related measures might not

capture all the sources of defects (Shibata 2002). In
line with Hinkley and Shibata’s research in the field of
semiconductor products, Su, Liu, and Whitney (2010)
developed a new defect generation mathematical
model to match the characteristics of copier assembly.
Moreover, Antani (2014) successfully tested the
hypothesis that manufacturing complexity could be
considered to reliably predict product quality in
mixed-model automotive assembly. The manufactur-
ing complexity he proposed incorporated variables
driven by design, process and human factors. Krugh
et al. (2016a; 2016b) adapted the method developed
by Antani for use with automotive electromechanical
connections in a large complex system. Falck et al.
(2017) proposed a method for the predictive assess-
ment of basic manual assembly complexity in which
he developed a tool to predict and control operator-
induced quality errors.

Most of the above mentioned defect prediction
methods rely on a power law relationship between the
average number of defects introduced during each
assembly phase and the related assembly complexity
(Shibata 2002; Su, Liu, and Whitney 2010; Hinckley
1994). Accordingly, many authors have proposed a
logarithmic transformation of data to linearize the
mathematical model. However, the fact that the defect
rate in each assembly phase is usually extremely low
can be extremely critical. In fact, when a logarithmic
transformation is applied, a bias may occur, especially
for very low values, and this can lead to completely
erroneous predictions.

The problem of the bias introduced after a data
transformation, which is a very common approach in
predictive model building, has been formally
addressed in the scientific literature by some authors
such as Land (1974), Miller (1984), Taylor (1986), and
Sakia (1988, 1990). Specifically, when a transformation
is applied to data, and it is also invertible, the fitted
value in transformed units may be evaluated using the
inverse of the transformation. Despite retransformed
model being in the appropriate units of measurement
for interpretation, it is generally recognized that such
retransformation can induce significant distortion of
expected values (Land 1974; Miller 1984). More
recently, a number of papers have addressed the issue
of the retransformation bias by estimating prediction
intervals in the original units of observation after fit-
ting a linear model to an appropriately transformed
response variable (Perry and Walker 2015; Perry
2018a, 2018Db).

The bias and the related consequences introduced
by the logarithmic transformation applied to defect



prediction models is discussed in the present paper,
taking the case study proposed by Su, Liu, and
Whitney (2010) as an example. More in detail, Su,
Liu, and Whitney (2010), unaware of the error intro-
duced by retransforming the logarithmic function in
the power-law model for predicting assembly defects,
stated that the prediction models previously developed
in the literature were not suitable. Accordingly, they
developed new models in the case of the assembly
of copiers.

The present study, in addition to demonstrating
that the models of generation of defects existing in
the scientific literature, developed by Hinckley (1994)
and Shibata (2002), are also applicable to the assembly
of electromechanical components such as copiers,
aims to contribute to the improvement of these pre-
diction models for operator-induced assembly defects
by analyzing and comparing two alternative methods
to overcome this drawback. The first approach is
based on the application of a bias correction factor to
the retransformed fitted value. The second method
uses a power-law nonlinear regression model for
obtaining reliable estimates of defects. In the case of a
small set of data, often not repeated, and affected by
great variability, as in the case of operator-induced
assembly defects, it has been demonstrated that non-
linear regressions are preferable to linear models with
the bias correction factor as more accurate in predict-
ing defects.

The paper is arranged as follows. First, the most
diffused defects prediction models are reviewed in
“Defect prediction models”. The bias occurring when
predicting defects in assembly manufacturing after the
linearization of the models is presented in “The bias
of logarithmic transformation in models of defect gen-
eration”. In “Consequences of logarithmic transform-
ation bias on the prediction of assembly defects”, the
consequences of the logarithmic transformation bias
in models of defect generation are discussed. In
“Alternative approaches to correct the logarithmic
bias”, two methods to correct the bias are introduced
and compared. Finally, “Alternative approaches to
correct the logarithmic bias” summarizes the main
of the paper and
conclusions.

findings reports the final

Defect prediction models

The most diffused models used to predict operator-
induced defects in assembly processes are reviewed in
this section.
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Hinckley’s model

Hinckley, studying defects generated in semiconductor
products, empirically found that the defects per unit
(DPU) were positively correlated with the total assem-
bly time and negatively correlated with the number of
assembly operations (Hinckley 1994; Hinckley and
Barkan 1995). He defined the assembly complexity
factor (Cf) as:

Cf = TAT — t, - TOP [1]

where TAT is the total assembly time for the entire
product, TOP is the total number of assembly opera-
tions, and ¢, is the threshold assembly time. The
threshold assembly time was defined as the time
required to perform the simplest assembly operation,
which required a finite time for its execution. Hence,
no defects are supposed to exist under the threshold
assembly time. Hinckley found that the logarithms of
the complexity and the corresponding defect rate
showed a positive linear correlation, as can be
observed in the following equation:

logDPU =K - log Cfp — log C (2]

where C and K are coefficients obtained from a linear
regression analysis.

Shibata’s model

Shibata (2002) and Shibata, Cheldelin, and Ishii
(2003) applied Hinckley’s model to the case of the
assembly of Sony’s home audio products, detailing it
by subdividing the product assembly process into a
series of workstations (Su, Liu, and Whitney 2010),
defined through operation standard sheets. A certain
number of job elements (Aft 2000), i.e., elementary
operations, were identified in each workstation.
Shibata defined the process-based complexity factor
of a generic workstation i as follows:
Na, i
Cfoi=» SSTj—to-Ngi=TAT; —to-No;i  [3]
=1

where N, ; is the number of job elements in worksta-
tion i, SST;; is the time spent on job element j in
workstation i, TAT; is the total assembly time relevant
to workstation i, and ¢, is the threshold assembly time
(Shibata 2002). It should be noted that the assembly
times, SST; are determined according to Sony
Standard Time (SST), a time estimation tool com-
monly used for electronic products. SST is used to set
the standard process time and estimate the required
Labor cost. Therefore, the Shibata prediction model is
based on the standard times in which the operators
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Table 1. Comparison of the R? values of the regression models applied to copier assembly, using Shibata and Su approaches

(Su, Liu, and Whitney 2010).

Process-based complexity factor

Design-based complexity factor Bivariate model

R? = 0.169
R? = 0.755

Prediction using Shibata’s model
Prediction using Su’s model

R? = 0.257
R? = 0.793

R? = 0.153
R? = 0.663

should complete each job element, rather than the
actual times of some specific operators. Time stand-
ards allow accurate estimates to be obtained, but a
good understanding of the system and significant
practical experience are required (Aft 2000).

Correlation relationships between the process-based
assembly complexity factor and DPU for each work-
station i were derived as follows:

log DPU; = K - log Cfp,; — log C (4]
Cfo.s

DPU; = — 5

C [5]

where C and K are two regression coefficients
obtained by applying linear regression to experimental
data, according to the model in Eq [2]
(Shibata 2002).

In addition, Shibata remarked that the time related
measures may not be able to capture all the sources of
defects. For this reason, he also defined a design-based
assembly complexity factor as follows:

Kp

Cfp,i = D. (6]

where Kp is an arbitrary coefficient for calibration
with process-based complexity; D; refers to the ease of
assembly (EOA) of workstation i, which is evaluated
by means of the design method for assembly/disas-
sembly cost-effectiveness (DAC) developed by Sony
Corporation (Yamagiwa 1988).

Shibata found that the correlation relationships
between design-based complexity and DPU can be
expressed as follows:

log DPU; = b - log Cfp,; + loga (7]

DPU; = a- Cf}, 8]

where a and b are again coefficients that may be
obtained by means of linear regression applied to
experimental data, according to the model in Eq. [7]
(Shibata 2002).

At this point, by combining Eqs. [4] and [7], Shibata
derived the following bivariate prediction model:

log DPU; = k; - log Cfp,i + k- log Cfp,i + logks [9]

where k;, k,, ks are again regression coefficients that
may be obtained by linear regression (Shibata 2002).

It is worth noting that Eq. [9] can also be written
as:

DPU; = ks - Cfy; - Cfi; [10]

where k;, kj k; may be obtained more correctly by
means of a power-law nonlinear regression.

In fact, as will be demonstrated in “The bias of
logarithmic transformation in models of defect gener-
ation”, the logarithmic transformation applied to low
values may introduce a significant bias into the linear
regression, with resulting dramatic errors in the pre-
dictions (Osborne 2010).

Su’s model

The aim of the work of Su, Liu, and Whitney (2010)
was to determine whether Shibata’s model was also
suitable for the copier industry. Once they had col-
lected all the data, they made a regression analysis
using SPSS® 13.0 software and selecting the power
regression option. Consequently, a prediction model
was derived, according to Eq. [9]. The authors
reported that the R® value of the obtained bivariate
model was only 0.257, instead of 0.7 (the value
obtained in Shibata’s study for the case of audio
equipment assemblies). This finding implied that
Shibata’s model was not appropriate for copiers (Su,
Liu, and Whitney 2010). However, as will be demon-
strated in “The bias of logarithmic transformation in
models of defect generation”, this conclusion was the
consequence of an improper and misleading use of
the SPSS® 13.0 software.

According to the unsatisfactory result of the predic-
tion obtained using Shibata’s model, Su et al. decided
to redesign the assembly complexity factor evaluation
methods to better satisfy the requirements of copiers
(Su, Liu, and Whitney 2010). Specifically, a new pro-
cess-based assembly complexity factor was formulated
by considering Fuji Xerox Standard Time instead of
Sony Standard Time and by integrating the time vari-
ation (Su, Liu, and Whitney 2010). Furthermore, the
design-based complexity factor was redesigned by
using the weights and the degree of difficulty associ-
ated to 11 design parameters chosen as criteria to
evaluate the complexity of the design (Su, Liu, and
Whitney 2010). As in the studies of Shibata (2002)
and Shibata (2003), Su, Liu, and Whitney (2010)



Table 2. Prediction models obtained by Su, Liu, and Whitney
(2010) for copier assembly using the approach proposed by

Shibata and selecting the power regression option in
SPSS® 13.0.

No. Model R?
(M DPU; = 6.42-107°Cfp, 2 0.169
(2)  DPU; = 0.0785Cfp, >3 0.153
(3)  log (DPU;) = 1.525 - log (Cfy,;) +1.935 - log (Cfp,;) —3.432  0.257

tested the correlation between each redesigned assem-
bly complexity factor and the DPU, showing that the
best regression function, in both cases, was a cubic
polynomial model (Su, Liu, and Whitney 2010). In
addition, the redesigned process- and design-based
complexity factors were also integrated in a new
bivariate prediction model, whose behavior was con-
firmed to be again cubic (Su, Liu, and Whitney 2010).
All the three new predictive models derived by Su,
Liu, and Whitney (2010) showed a significant increase
in R*> values compared to those obtained using the
relative models proposed by Shibata, as shown in
Table 1.

The bias of logarithmic transformation in
models of defect generation

Most of the assembly defect prediction models pro-
posed in literature apply logarithmic transformation
to data in order to linearize the relationship between
the DPUs and the related assembly complexity factors
(Hinckley 1994; Shibata 2002; Su, Liu, and Whitney
2010). However, the extremely low defect rate at each
assembly step can result in an undesirable effect. In
fact, when a logarithmic transformation is applied, a
bias can occur, especially for very low values, and this
can lead to erroneous predictions. In this section, in
order to demonstrate the bias of the logarithmic
transformation in defect prediction models for assem-
bly processes, the case study proposed by Su, Liu, and
Whitney (2010) has been adopted as an example.

As previously pointed out, in the work of Su, Liu,
and Whitney (2010), the correlation between the pro-
cess-based complexity factor and the design-based com-
plexity factor with DPU was analyzed using the
approach proposed by Shibata, both separately and in a
bivariate model. The results of the regressions on copier
data and the related R?, as obtained by Su et al. using
the SPSS® 13.0 software, with the power regression
option proposed by the software (Su, Liu, and Whitney
2010; SPSS Inc 2004), are reported in Table 2.

The models in Table 2 could appear correct to a
hasty reader. However, as shown in Figures 1 and 2,
which illustrate the data and the fitting curves of
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model (1) and (2) in Table 2, the regression curves
are shifted downwards, compared to the data disposi-
tions, and do not seem to properly fit the data.
Furthermore, the residual analysis of DPU versus the
fitted values, considering Cfp; as the predictor (see
Figure 3), and that of DPU versus the fitted values,
considering Cfp; as the predictor (see Figure 4), using
the logarithmic transformation and the linear regres-
sion with copier assembly data (Su, Liu, and Whitney
2010), show that the residual averages deviate from
zero and several outliers appear. This is further con-
firmed by the very low values of R? (see Table 2).
This bias must be due to the algorithm that is used by
SPSS® 13.0 (2004) for the calculation of the regression
curve. In this software, the algorithm used for the cal-
culation of the power regression model is based on
the following equation:

E(Y:) =By th [11]

where Y; is the observed series (t=1,2,...,n) and
E(Y;) is the expected value of Y;. Furthermore, it is
assumed that this nonlinear model (as well as the
Compound, S, Growth and Exponential models) may
be expressed in linear form by applying a logarithmic
transformation, as shown in Eq. [12] (SPSS Inc 2004):

log (Y;) = log (E(Y:)) + & [12]

with &(t=1,...,n) being independently identically
distributed N (0,6%).
Eq. [12] may also be rewritten as:

log (Y:) = log By + B, - logt + & [13]

Once the power model has been expressed in linear
form (see Eq. [13]), linear regression computational
techniques can be applied.

It should be noted that this approach is also auto-
matically implemented in other commercial software
packages, such as, for example, Microsoft Excel
(Liengme 2008).

As an example, Figure 5 shows the approach pur-
sued by the software whereby logDPU versus logCfp
(see model (1) in Table 2) is plotted.

By applying the linear regression model of Eq. [13]
to the data in Figure 5, the following regression curve
is obtained:

log DPU; = 2.51 - log Cfp,; — 9.65 [14]

Eq. [14] can be transformed into the following
power-law model:
DPU; = 6.42 - 10 °Cfp ;*°! [15]

which corresponds to model
Table 2.

(1) anticipated in
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Figure 1. Curve fitting of DPU versus Cf, using logarithmic transformation and linear regression (see model (1) in Table 2) with

copier assembly data (Su, Liu, and Whitney 2010).
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Figure 2. Curve fitting of DPU versus Cfp using logarithmic transformation and linear regression (see model (2) in Table 2) with

copier assembly data (Su, Liu, and Whitney 2010).

The same approach can be applied to the other two
models, that is, models (2) and (3) in Table 2.

At this point, a question arises: why do the fitting
curves obtained by applying the approach proposed by
Shibata (i.e., with logarithmic transformation) to copier
assembly not seem to fit the data properly? By analyz-
ing the data in Figures 1 and 5 carefully, it can be
noticed that the points that refer to the workstations
where the DPUs are close to zero (see Figure 1) result
to be more spaced-out downwards as one moves
along the log-log scale (see Figure 5). On the other

hand, the points corresponding to the workstations
with high DPU values become less spaced-out. The
effect of the logarithmic transformation of the data is
in fact that of both a downwards expansion of the
positions of the workstations with low DPU values
and of a compression of those of the workstations
with high DPU values. Consequently, the regression
curve is heavily biased toward low values (i.e., the
lower part of the graphs in Figure 5 and, conse-
quently, of that in Figure 1). In fact, the logarithmic
transformation has a significant bias effect when
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Figure 3. DPU residuals versus fitted values using logarithmic transformation and linear regression and considering Cf, as the pre-
dictor (see model (1) in Table 2) with copier assembly data (Su, Liu, and Whitney 2010).
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Figure 4. DPU residuals versus fitted values using logarithmic transformation and linear regression and considering Cfp as the pre-
dictor (see model (2) in Table 2) with copier assembly data (Su, Liu, and Whitney 2010).

applied to numbers between 0 and 1, as in the case
of DPUs.

The problem caused by data transformations has
been extensively studied in the literature (Land 1974;
Miller 1984; Perry 2018a, 2018b; Perry and Walker
2015; Sakia 1990; Sakia 1988). Formally speaking, the
bias in the retransformed model can be explained
using Jensen’s Inequality. More specifically, Jensen’s
Inequality states that for a random variable Z:

E[h(Z)] > h(E[Z) [16]

where h(:) is a convex function (if h(Z) is concave,
then the inequality is reversed) (Perry 2018b). A

simple example involves the square-root transform-
ation from the original units Y to the transformed
units Z: V'Y = Z ~ D(,6°), where D is a distribution
(often assumed normal). Thus, Y = Z* = h(2)
denotes its inverse. Then: E[Y] = E[h(Z)] = E[Z?] =
w406 > h(E[Z]) = h(n) = p’ Thus, the retransfor-
mation bias for a square-root transformation is E[Y] -
h(E[Z]) =¢?, or the variance of the transformed
response, i.e., Var(Z).

In order to correct this bias, several authors have
proposed reduced-bias point estimators (Taylor 1986;
Sakia 1990; Sakia 1988; Perry 2018a, 2018b; Perry and
Walker 2015).
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Consequences of logarithmic transformation
bias on the prediction of assembly defects

The obtained results suggest that using the proposed
nonlinear models leads to a more accurate defect pre-
vision, compared with models which apply a logarith-
mic transformation to data, as demonstrated in the
case of copier assembly (Su, Liu, and Whitney 2010).
One of the main consequences of the bias resulting
from the linearization is that erroneous conclusions
may be drawn. For instance, Su, Liu, and Whitney
(2010), unaware of the logarithmic transformation
problem, suggested that the method proposed by
Shibata (2002) was not suitable for their case study
concerning assembly defect prediction. Accordingly,
they redesigned new evaluation methods of the assem-
bly complexity factors and, as a result, they developed
a new prediction model (see “Defect prediction mod-
els”). However, the predictions obtained applying the
nonlinear regressions in the form proposed by Shibata
(2002), as reported in Table 3, reveal that Shibata’s
model was also suitable for copier products and, more
in general, for electro-mechanical products. For these
reasons, the new prediction models proposed by Su,
Liu, and Whitney (2010) (see Eqs. [14] to [16]) are
not necessary and, additionally, as a result of their
polynomial structure, fit perfectly from a mathemat-
ical point of view, but are difficult to interpret from
the physical problem perspective.

Alternative approaches to correct the
logarithmic bias

Bias correction factor

According to previous studies it can be demonstrated
that, in order to correct the bias introduced when

0.5 1
log Cf,

1.5

retransforming the linearized function in the power-
law form, a bias correction factor can be easily applied
to the retransformed fitted value (Perry 2018a, 2018b;
Perry and Walker 2015). Specifically, the natural loga-
rithmic function which allows to transform the ori-
ginal units DPU into the transformed units Z can be
formalized as: logDPU =2Z ~ N(u,0%). Then, the
inverse transformation is: DPU = e = h(Z).
Therefore, the exact closed-form expression for
E[DPU] in this case is easily shown to be:

E[DPU| = E[h(Z)] = E[¢?] = e#+77/D) = ¢t . ¢7/2
> h(E[Z]) = h(u) = €
[17]

Thus, the retransformation bias for a natural loga-
rithmic transformation is:

E[DPU] — h(E[Z]) = " - (77> — 1) [18]

Accordingly, the reduced-bias fitted values of the
untransformed response would be computed as: e -

¢®’/2, where [t is the estimator for the mean of the
transformed variable logDPU and ¢ is the estimator
for the standard deviation of logDPU in homosche-
dastic conditions.

The multiplicative bias correction factor, e/ 2
derived from Eq. [18], was applied to the set of data
concerning the copier assembly (Su, Liu, and Whitney
2010). The fitted values obtained from the regressions
specified in Table 2 have been corrected and the
resulting curve fittings (see Figures 6 and 7) and
residual plots (see Figures 8 and 9) are reported.

As can be seen from Figures 6 and 7, the curves
obtained by applying the bias correction factor fit very
well with the experimental data up to a certain thresh-
old (up to 2 for Cfp and before the value of 0.25 for
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Table 3. Comparison between predictions, S values (to be multiplied by 10~% and D values (to be multi-
plied by 107 obtained by applying (a) the linear regression after the logarithmic transformation of data,
(b) the linear regression after the logarithmic transformation of data with the bias correction factor, (c)
power-law nonlinear regression, (c*) generalized Poisson power-law nonlinear regression to the data pro-
duced by Su, Liu, and Whitney (2010).

No. Predictor Regression curve S value (x 107 D value (x 107)
(1a) Cfp DPU; = 6.42 - 107°Cf 2! 6.46 9.18
(1b) Cfp DPU; = 1.53 - 1074Cf 2" 9.49 19.80
(To) Cfp DPU; = 1.88 - 1074Cfp" %0 5.43 6.49
(2a) Cfp DPU; = 8.66 - 1072Cfp>® 8.02 13.51
(2b) Cfp DPU; = 1.97 - 107" Cfp>® 15.80 52.15
(20 Cfp DPU; = 1.24 - 10~2Cfp,"7* 6.49 8.83
(3a) (fp and (fp DPU; = 2.74 - 1075 - Cfp, ;715 - Cfy, 322 11.10 25.89
(3b) (fp and Cfp DPU; = 1.44 - 107> - Cfy,; =115 - Cfp, 222 18.80 74.25
(30 Cfp and Cfp DPU; = 2.86 - 107> - Cfy ;28 . Cfp, 40 3.36 238
(3c%) Cfp and Cfp DPU; = 7.68 -107° - Cf, ;"1 - Cf ;1032 - 247
-3
x 10
45
4
® ®
3.5 ;;?'
3 o’
.@
> 25
a2 @
Q 2 (]
@©
15 @
1 & ®
® o . o
0.5 ® »°
® .8 23000
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0 0.5 1 15 2 2.5 3 3.5 4
o

Figure 6. Experimental data of copier assembly (Su, Liu, and Whitney 2010) and curve fitting of the reduced-bias fitted values of

DPU versus Cfp (obtained from model (1) in Table 2).

Cfp). As a result, residuals above these thresholds are
higher than those obtained for lower complexity val-
ues (see Figures 8 and 9). The reasons for this upward
shift of the curve from a certain threshold onwards
must be sought in the actual structure of the experi-
mental data. In fact, in the work of Su, Liu, and
Whitney (2010), the data set is small (less than thirty
experimental data), and there are also few replicated
data, especially for the higher values of complexity.
Moreover, the data are characterized by an intrinsic
internal variability. The combination of these factors
justifies the above-mentioned trend of the curves.

The same approach was applied to the bivariate
model, i.e., the model which include both the process
and the design-based complexity factors (see model
(3) of Table 2), and the related results will be dis-
cussed in the “Comparison between methods”.

Power-law nonlinear regression model

In order to overcome the bias introduced by the loga-
rithmic transformation, an alternative approach based
on a nonlinear regression model is here proposed. In
other words, the bias problem can be overcome by
applying power-law regression models to a set of data
with low DPU values, such as in the case of a copier
assembly (Su, Liu, and Whitney 2010). To this aim,
the three models in Table 2 have been redefined and,
using the Minitab® software, the corresponding power
regression models become:

DPU; = ky - Cfp, © [19]
DPU; = ks - Cfp, " [20]
DPU; = ks - Cfy¢, - Cfp, ¥ [21]



10 M. GALETTO ET AL.

x 10

DPU
S

ohe
&,

o
0 28
0 005 01 015 02

¢
@

L]
»‘.‘}//
°
[
@
°
®
o ® 4
°
0.25 03 035 0.4 0.45
fo

Figure 7. Experimental data of copier assembly (Su, Liu, and Whitney 2010) and curve fitting of the reduced-bias fitted values of

DPU versus Cfp (obtained from model (2) in Table 2).

-3
x 10
3
25
2
15
3
3
o
05
°
°
o oo % °
.‘oo ®
o ® o
0.5 L)
1
0 0.5 1 15 2

x10°

2.5 3 3.5 4 4.5

Reduced-bias Fitted value (using Cfp)

Figure 8. DPU residuals versus reduced-bias fitted values considering Cf, as the predictor (obtained from model (1) in Table 2)

with copier assembly data (Su, Liu, and Whitney 2010).

where k;, k, ks k4 ks, ke k; are regression coeffi-
cients obtained from power-law nonlinear regres-
sion models.

The method used in Minitab® to determine the
least squares estimation is the Gauss-Newton method.
This method uses a linear approximation for the
expectation function in order to iteratively improve an
initial guess 0° for 0, and the method then keeps
improving the estimates until the relative offset falls
below a prescribed threshold (Bates and Watts 1988).

First, according to the Gauss-Newton method, the
new regression model for DPU versus Cfp (using the

data in Figure 1) is obtained, as shown in Figure 10.
Similarly, the data in Figure 2 are re-analyzed and the
new curve fitting for DPU versus Cfp is reported in
Figure 11. In Figures 7 and 10, the 95% confidence
and prediction interval bands are represented around
the fitted curve.

As far as the bivariate model is concerned, the
regression coefficients were estimated using the
Minitab® software, and the related 3D surface plot is
reported is illustrated in Figure 12. Furthermore, in
Figure 13 the residuals of the bivariate nonlinear
regression model can be visualized.
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Figure 9. DPU residuals versus reduced-bias fitted values considering Cfp as the predictor (obtained from model (2) in Table 2)

with copier assembly data (Su, Liu, and Whitney 2010).
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Figure 10. Curve fitting for DPU versus Cfp using power-law nonlinear regression with data produced by Su, Liu, and Whitney

(2010) (see Eq. [19]).

Comparison between methods

In order to compare the two different methods, i.e.,
the linear regression with a bias correction factor and
the power-law nonlinear regression, with respect to
the simple linear regression, all the regression curves

are reported in Table 3 in the original units. Models
(1a), (2a) and (3a) refers to the re-transformed model
after having performed the linear regression, models
(1b), (2b) and (3b) refers to the re-transformed model
after having performed the linear regression with a
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Figure 11. Curve fitting for DPU versus Cfy, using power-law nonlinear regression with data produced by Su, Liu, and Whitney

(2010) (see Eq. [20]).

x 103

Figure 12. 3D surface plot of DPU against Cf, and Cfp (experimental points of the workstations pertaining to the copier assembly

process (see also Su, Liu, and Whitney (2010)) and the theoretical

bias correction factor. Finally, models (1c), (2c¢) and
(3¢) refers to the nonlinear regression model.

At this point, a consideration must be expressed on
goodness-of-fit statistic to assess the adequacy of the
models. When dealing with nonlinear regression,
using the R® as a goodness-of-fit statistic is not rec-
ommended (Spiess and Neumeyer 2010; Kvélseth

model (see Eq. [21]).

1983; Bates and Watts 1988). In fact, R? is based on
the underlying assumption that the regression is lin-
ear. Instead, in nonlinear regression, the addition of
the residual sum of squares and the regression sum of
squares is not equal to the total sum of squares
(Draper and Smith 1998; Bates and Watts 1988;
Devore 2011). As a result, R* for nonlinear models
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Figure 13. Residuals of DPU versus fitted values using power-law nonlinear regression, considering Cfp and Cfp as predictors with

data produced by Su, Liu, and Whitney (2010) (see Eq. [21]).

may not fall between 0 and 100%. This phenomenon
was demonstrated by Spiess and Neumeyer (2010).
They performed thousands of simulations and con-
firmed that using R* to evaluate the fit of nonlinear
models leads to incorrect conclusions (Spiess and
Neumeyer 2010). Kvalseth proved that, for the case of
nonlinear models, such as power models and the
exponential models frequently used in behavioral sci-
ences, the R? measure is often subject to incorrect cal-
culations and misinterpretations, thus producing
potentially  misleading (Kvélseth  1985;
Kvalseth 1983).

In order to overcome this misleading use of R, the
authors suggest using the S value as a goodness-of-fit
statistic. The S value, known both as the standard
error of the regression and as the standard error of
the estimate, represents the average distance that the
observed values fall from the regression line, accord-

ing to Eq. [22]:
S / RSS [22]
N-—-P

where RSS is the sum of squared residuals (according
to Eq. [23]), N is the number of observations and P is
the number of free parameters.

results

N N

RSS =Y (&) = Z(yi — ) [23]

i=1
where i falls between 1 and N, i.e., the total number
of observations; e; is the residual of an observation; y;

is the i-th observed response variable and y ; is the i-
th fitted response.

Therefore, in order to evaluate the goodness of fit
of the nonlinear regression models, smaller values of S
are desirable because in this way the observations
would fall closer to the fitted line. In addition, the
regression residuals should be randomly distributed,
because in this way the nonlinear model would not
present a systematic bias (Devore 2011).

As can be seen from Table 3, in which the S value
of each model, calculated according to Eq. [22], is
reported, the nonlinear regression models have a
lower S value than the two linear regression models
performed after the logarithmic transformation of
data (see S value of models (1c), (2¢) and (3¢c) com-
pared to others. This result shows that, on average,
the nonlinear regression models leads to smaller resid-
uals with respect to other models. More specifically,
plotting on the same graph the models (1a), (1b) and
(1c) (see Figure 14) and models (2a), (2b) and (2c¢)
(see Figure 15), it is evident that nonlinear regression
models fit better with the experimental data. In fact,
although the models in which the bias correction fac-
tor is introduced (see models (1¢), (2¢) and (3c)) are
moved upwards compared to the respective models
without correction (see models (la), (2a) and (3a))
and improve residual plots as the residual averages no
longer deviate from zero (compare Figures 3 and 4
with Figures 8 and 9), they present some peculiarities.
Focusing on Figure 14, it is noticeable that up to the
value 1.7 of Cfp the two alternative models used to
correct the bias introduced by the linearization, i.e.,
model (1b) and (1c) exactly match. Above this value,
model (1c) moves upwards. Similarly, in Figure 15, up
to the value 0.25 of Cfp, the models (2b) and (2¢) are
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Figure 14. Comparison of curve fitting for DPU versus Cfp using linear regression (model (1a) in Table 3), linear regression with
bias correction factor (model (1b) in Table 3), and power-law nonlinear regression (see model (1c) in Table 3) with data produced

by Su, Liu, and Whitney (2010).
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Figure 15. Comparison of curve fitting for DPU versus Cfp using linear regression (model (2a) in Table 3), linear regression with
bias correction factor (model (2b) in Table 3), and power-law nonlinear regression (see model (2¢c) in Table 3) with data produced

by Su, Liu, and Whitney (2010).

very similar. However, from this threshold onwards
the model (2¢) deviates from the other. As anticipated
in “Bias correction factor”, the upward shift of the lin-
ear models with bias correction factors (models (1c),
(2¢) and (3¢)) is to be attributed to the small dataset,
to the lack of replicated data, especially for higher val-
ues of complexity and the intrinsic internal variability
of data. Accordingly, the nonlinear regression models

are to be preferred when having data similar to those
used in the work of Su, Liu, and Whitney (2010).
Finally, analyzing in detail the best suitable models
for this dataset, i.e., the non-linear models, and their
residual plots (see Figures 13, 16, and 17), it is evident
that heteroscedasticity occurs. However, heteroscedas-
ticity is physiological for counts, as in this case for
DPUs, as variability increases with the growth of
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Figure 16. Residuals of DPU versus fitted values using power-law nonlinear regression, considering Cf, as a predictor and using

data produced by Su, Liu, and Whitney (2010) (see Eq. [19]).
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Figure 17. Residuals of DPU versus fitted values using power-law nonlinear regression, considering Cfp as a predictor and using

data produced by Su, Liu, and Whitney (2010) (see Eq. [20]).

DPUs. It is worth remarking that the introduction of
both the design-based and the product-based com-
plexity factor in the bivariate prediction model (model
(3¢) in Table 3) contributes to reducing the heterosce-
dasticity with respect to the models with single predic-
tors (models (3a) and (3b) in Table 3). Indeed, Figure
13 reveals that the maximum residual values are sig-
nificantly reduced in comparison to those of models
(3a) and (3b), illustrated in Figures 16 and 17.

In such a case, namely when the least squares
assumption of constant variance in the residuals is
violated due to the use of count data in the response,
a generalized nonlinear regression approach can be
performed using a response distribution that has the

characteristics of the variance as a function of the
mean, a property commonly associated with count
data (Seber and Wild 1989). Among all possible
response distributions, the most appropriate for this
case study are the Poisson and the Negative Binomial
distributions or the Gamma distribution as a continu-
ous response distribution. Consequently, the general-
ized power-law nonlinear regressions were performed,
and the estimates of the model parameters obtained
using the three different response distributions were
not significantly different from each other. In
the model (3c¢*) in Table 3, by way of example, the
parameters of the bivariate model estimated using the
generalized Poisson nonlinear regression are reported.
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Figure 18. Residuals of DPU versus fitted values using generalized Poisson power-law nonlinear regression, considering Cf, and
Cfp as predictors with data produced by Su, Liu, and Whitney (2010) (see model (3c*) in Table 3).

In addition, the residuals of the performed generalized
Poisson nonlinear regression are shown in Figure 18.
Since the generalized nonlinear regression is a refine-
ment of the classical regression, the authors decided
to implement it exclusively for the bivariate model,
which is the complete model to be used for predicting
defects that presents the lowest heteroscedasticity, as
mentioned above. However, it should be noted that
the generalized nonlinear regression could also have
been used for estimating the parameters of the models
(3a) and (3b) in Table 3. When residuals do not fol-
low a Normal distribution, as in the case of the gener-
alized nonlinear regression model, the use of a
standard residuals-based measurement, such as S
value, may be inappropriate (McCullagh and Nelder
1989). For that reason, in Table 3, the deviance value
D of each model is reported in order to compare the
model (3c*) with the others. Indeed, the deviance is a
goodness-of-fit statistic that generalizes the sum of
squares of residuals in ordinary least squares to cases
where model-fitting is achieved by maximum likeli-
hood, as for generalized linear models (McCullagh
and Nelder 1989). In the case of normal distribution
of residuals, the deviance is calculated using Eq. [23].
For the generalized Poisson power-law nonlinear
regression of model (3c¢*), D value is calculated
according to Eq. [24]:

:Z (yt logA yi+)7i> [24]

As shown in Table 3, the nonlinear bivariate mod-
els (3c) and (3c¢*) have very close deviance values,
which are lower than those of all the other models.

Conclusion

Defect prevention and elimination are increasingly
being adopted in the manufacturing field, since
defects can affect the final quality and cost of products
to a great extent. A lower defect rate is required above
all in the assembly process, where the continuously
shortening product life cycles require a faster response
speed as well as a high level of product quality. In this
situation, assembly quality control is becoming one of
the most demanding problems in the modern manu-
facturing environment. Specific studies concerning the
causes of assembly defects have shown that operator
errors account for high percentage of the total defects.
For instance, Shibata (2002) proposed a model to pre-
dict defects in the semiconductor product field, and
Su, Liu, and Whitney (2010), on the basis of the for-
mer model, focused on the manufacturing field of
copier assembly processes. These models are based on
the relationship between the average number of
defects introduced during each assembly phase and
the related assembly complexity factors, which follows
power law relationship. For this reason, many authors
have proposed a logarithmic transformation of data in
order to linearize the relationship model. However,
the most critical aspect of such an approach is that
the defect rates are often very low. Therefore, if a
logarithmic transformation is applied, a bias may
occur, especially for very low values, and this in turn
can lead to dramatically erroneous predictions.

The bias of the logarithmic transformation that
may distort defect predictions has been analyzed and
discussed in this paper. This study has shown that the
bias can lead to dramatically wrong conclusions, as in



the case of the work of Su, Liu, and Whitney (2010).
In fact, these authors were led to erroneously affirm
that Shibata’s model was not suitable for electromech-
anical products. In order to overcome this bias, two
alternative methods are analyzed and compared: the
use of a bias correction factor to correct the fitted val-
ues of the linear regression, performed after the loga-
rithmic transformation of data, and a (generalized)
power-law nonlinear regression model for obtaining
reliable estimates of defects. The use of nonlinear
models has proved to be more accurate in predicting
defects in the case of a few data, often not repeated,
and affected by high variability, as in the case of cop-
ier assembly processes (Su, Liu, and Whitney 2010).
Accordingly, the implementation of these models can
improve defect previsions to a great extent and con-
firm the validity of the approach proposed by previ-
ous authors, such as Shibata (2002). Although
applying a bias correction factor may be easier and
immediate for practitioners, performing nonlinear
regression models, which are more complicated from
a computational point of view, has become straight-
forward thanks to the automatic implementation in
commonly used software, such as Minitab®, exten-
sively used also in the business environment.
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